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ABSTRACT 

The orientation of a  spacecraft when it is in a  stable equilibrium 

state is  studied.     The spacecraft contains a  single momentum wheel which 

stores angular momentum.     The axis of the wheel is not necessarily parallel 

to a principal axis of the spacecraft.     For an arbitrary but fixed  speed of 

the wheel relative to the spacecraft body,   it is shown that there may be one, 

two,   or three stable equilibrium points.     At each of these points,   the body 

may spin about an axis which is fixed in both spacecraft and inertial coor- 

dinates.     The orientation of this axis in spacecraft coordinates can be 

determined from expressions in this report.     A threshold can be deter- 

mined  such that,   if the speed of the wheel relative to the  spacecraft is 

larger than this threshold,   there is only one stable equilibrium point.     This 

information can be used to determine the eventual orientation of the space- 

craft provided it is designed  such that,   if it becomes  seriously misoriented, 

the momentum wheel drive motor automatically holds the wheel  speed to a 

predetermined value. 
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STABLE EQUILIBRIUM ORIENTATION OF A SPACECRAFT 

WHICH CONTAINS A MOMENTUM WHEEL 

1.     Introduction 

The orientation of a  spacecraft when it is in a  stable equilibrium state 

is studied in this report.     The spacecraft is assumed to contain a  single 

momentum wheel with its  spin axis in an arbitrary direction and a damper for 

dissipation of energy.     Two  situations are already well understood. 

(a) The wheel is  spinning at such a  speed that the magnitude of 

its angular momentum equals that of the entire spacecraft.     In its unique  stable 

equilibrium  state,   the  spacecraft will orient itself such that the momentum 

vector of the wheel coincides with the momentum vector of the entire space- 

craft which is fixed in inertial coordinates. 

(b) The wheel has  stopped  spinning relative to the  spacecraft body. 

There are two  stable equilibrium states.     In each,   the axis of maximum moment 

of inertia of the spacecraft is oriented in one of two possible directions along 

the momentum vector and the  spacecraft is  spinning about this axis. 

In each of these two situations,   when the  spacecraft is not in a  stable 

equilibrium  state,   the damper dissipates energy and drives the  spacecraft 

toward a  stable equilibrium state. *   In this  stable equilibrium  state,   the damper 

dissipates no energy since the  spacecraft is either stationary or spinning about 

a fixed axis. 

Intermediate situations between these two extreme  situations are 

analyzed in this report.     The momentum -wheel speed relative to the body is 

assumed to be held constant by a drive motor and the orientation of the space- 

craft when it is in a  stable equilibrium state is investigated.     It will be  shown 

that for an arbitrary but fixed wheel speed in any stable equilibrium  state the 

*   In theory,   no dissipation takes place when the  spacecraft is in an unstable 
equilibrium state,   but this case is ignored in this report because in practice 
a disturbance torque will perturb the spacecraft from an unstable equilibrium 
state. 



body will  rotate about  some axis which orients itself along the  spacecraft 

momentum vector.     The damper dissipates no energy while the spacecraft 

spins about this axis.     This axis is not necessarily the wheel axis or a princi- 

pal axis of the  spacecraft.     If the wheel speed is larger than some threshold, 

it will be shown that there is only one stable equilibrium state and the orienta- 

tion of the spacecraft when in this state can be determined.     If the spacecraft 

is designed  so that when it becomes misoriented the momentum wheel is auto- 

matically driven at a predetermined  speed,   the methods of this report can be 

used to determine the equilibrium orientation of the spacecraft. 

The precise evaluation of the expressions of this report requires a 

knowledge of  h,   the magnitude of the spacecraft angular momentum.     For 

example,   the threshold varies linearly with   h.     However,   in many cases,   the 

direction of the axis in spacecraft coordinates about which the body spins is 

insensitive to fairly large variations in   h   as long as the wheel  speed remains 

above the threshold.     Therefore,   the results of this  report are useful when   h 

is known only approximately. 

When two of the principal moments of inertia are equal,   the results of 

this report require  some  special interpretation since some of the expressions 

become infinite.     The best way to handle this situation is to let the moments of 

inertia differ by a  small quantity and observe what happens when this quantity 

approaches zero.     In practice,   no two moments of inertia are exactly equal, 

so the results for equal moments of inertia are not emphasized in this report. 

For the special case where the spacecraft body is symmetric about the 

wheel axis,   the threshold value of the wheel  speed is determined in Ref.   2 

using a  somewhat different approach. 

2.     Formulation of the Problem 

Consider a spacecraft which is rigid except that it contains a momentum 

wheel that is free to rotate about a  shaft parallel to an axis   Z   in spacecraft 

coordinates which passes through the spacecraft center of mass.     Define the 

direction of positive   Z   such that a vector representing angular velocity of the 

wheel with respect to the rest of the spacecraft is in the direction of positive   Z. 



The momentum wheel is assumed to have symmetry and maximum moment of 

inertia about its  spin axis,   and all parts of the spacecraft other than the wheel 

will be referred to as the body.     Two additional coordinates   X   and   Y   are 

chosen  so that  XYZ   forms a  right-hand orthogonal coordinate system fixed 

to the spacecraft body and centered at the spacecraft center of mass.     If the 

momentum wheel were clamped in any position,   the rigid  spacecraft would have 

three principal axes.     Denote these axes   x,   y,   and   z,   which form a right-hand 

orthogonal coordinate  system  such that the positive   Z   axis is in the octant 

x 5 0,   v > 0,   and   z > 0,   and such that  I    si     and   I    > I     where   1,1,   and   I 
xyxzxyz 

are the principal moments of inertia of the spacecraft (if the wheel is clamped). 

See  Fig.    ] . 

Let the moment of inertia of the wheel about its axes be   C   and the 

angular velocity of the wheel with respect to the body be a vector  eo   along   Z. 

The  spacecraft has a total angular momentum   h   in some arbitrary direction. 

The vector   h   can be broken into two components,   a vector   Ceo   along   Z   and a 

vector   h —Ceo.     Let the components of   Ceo   along  x,   y,   and   z   have magnitude 

a   Ceo,   a   Ceo,   and   a   Ceo where  eo =   | eo I   and let the components of  h   have magni- 
XY z — ' 2 2 I        ~      2 2 

tude   b   h,   b   h,   and   b   h   where   h  =   I h   .     Then   a      +a      +a      =l,b      + b      + 
xy z — x y z xy 

b       =   1,   and,   because of the way  x,   y,   and   z   were defined,   a     > 0,   a     S 0, 
z ' ' x y 

and   a     £ 0. 
z 

3.     Points of Minimum Kinetic Energy 

In this  section,   we consider a problem where   a,   a,   a,   I,   I,   I, 
x       y       z      x       y       z 

C,   h,   and   eo   are fixed and examine the minima of the function 

2T(bx,by,bz)/h2    =    (bx-Pax)2/lx + (by-Day)Z/ly + (bz-oaz)2/lz+o2/C 

(1) 

where   T   is the kinetic energy of the spacecraft and   o = (-y—)•     Equation   1   is 

a  standard representation of the kinetic energy in terms of components of 

angular momentum and principal moments of inertia.     See Ref.    1  or  3. 

2 2 1 
For    each point on the unit sphere,   b      + b      + b      =1,   the value of   T r r x y z 

can be computed using Eq.    1.     The assumption that eo   is fixed implies that a 



motor drives the wheel at a constant speed relative to the rest of the space- 

craft.    Assuming that energy is dissipated inthe body by the damper, regardless 

of the initial values of  b   , b   , and   b    (initial orientation of  h   inthe  spacecraft 
x      y z — r 

coordinate  system),  the spacecraft will eventually orient itself so that  b   , b   , and 
i x       y 

b     take onthe values ofthe coordinates ofa minimum of  T.    In this stable equili- 

brium  state,   the direction of  h   is fixed in both inertial coordinates and in the 

spacecraft coordinates.     Therefore,   the spacecraft body is either stationary 

with respect to an inertial frame of reference or rotating about  h.     In this 

report the terms minimum and stable equilibrium point are used interchangea- 

bly.     At a minimum,   the damper dissipates no energy since the body is either 

stationary or spinning about a fixed axis. 

There are several  situations in which knowledge of the components of 

h,   or equivalently the direction of the axis about which the body spins,   in 

spacecraft coordinates is valuable.     Two situations are: 

(a) The spacecraft loses power for a while (e. g. ,   while in the 

earth's shadow) so that the momentum wheel stops spinning relative to the 

body.     Power is regained and the momentum wheel is automatically accelera- 

ted to a predetermined  speed  u>   relative to the body.      In many practical cases, 

the magnitude of the angular momentum,   h,   will be much larger than the 

magnitude of angular momentum changes caused by disturbance torques during 

the power outage so that the direction and magnitude of  h remain approxi- 

mately fixed in inertial  space.     Knowledge of the components of  h in the space- 

craft coordinate  system would be extremely helpful in bringing about complete 

recovery of the  spacecraft from misorientation suffered while the momentum 

wheel was without power. 

(b) Due to faulty ejection of the spacecraft from the launch 

vehicle or large disturbance torques caused by failure of gas jets in the open 

position,   the magnitude and orientation of  h   in inertial coordinates is unknown 

but the wheel is automatically held by the motor to a predetermined speed GJ 

relative to the body.     Knowledge of the orientation of  h in spacecraft coordi- 

nates would be helpful as a first step in determining the orientation of  h in 

inertial space and eventual  spacecraft recovery. 



It is shown in the appendix that the function   T (b   , b   , b   ) always has 
X y Z 

one and only one minimum in the region  b    > 0,   b    2 0,   b    "> 0.     T   may have 5 x y z ; 

zero,   one,   or two minima in the region  b    < 0,   b    SO,   b    > 0   and there are 
° x y z 

no  minima in any other regions.     Two  sufficient conditions that   T   have a 

unique minimum are 

,2 

and 

_    ,OJC.Z 
(i -i ) x y 

(a   I   )Z/3 + (a   I   )2/3~ 3 
x y y x        J 

(Z) 

,uC. Z (ir' 
(i -i ) X        z 

)2/3 + (az:x)Z/3] 3 
(3) 

(a  I  ) [_   x z 

If either Eq.  Z or 3 is satisfied,   T   will have one and only one minimum.     Let 

t = C/h   times the positive square root ofthe smaller ofthe two expressions on 

the right-hand  side of Eqs.  Z and 3.    The coordinates of this minimum  satisfythe 

relation givenin Table  1 for various ranges ofthe parameters a   ,a   , and   a   . 6 5 ^ x     y z 

Table  1 

Conditions on   a   ,   a   ,   a x       y       z 
Coordinates of Unique Minimum Satisfy 

a     =  1,   a    = a     = 0 * x y z 

a     =  1,   a     = a    = 0 * y x z 

a    =  1,   a    = a     = 0* z x y 

a    = 0,   a    > 0,   a    > 0* x y z 

a     =0,   a    >0,a    >0 y x z 

b =   1,   b     = b     =0 x y z 

b =1,   b    =b    =0 y x z 

b =1,   b     = b     =0 z x y 

b = 0,   b    = Da   I b  /[pa  I + (I   -I )b  1, x y yzz'lzy       zyz 

b = +    1-b   2 

y \ z 

b = 0,   b    = pa   I b  /[pa  I +(I   -I  )b  1 , 
y z zxx xzxzx 

b = +   /1 - b   2 

x -\ z 

*   For these four cases,   a necessary condition for   T   to have a unique minimum 
is that either Eq.   2 or 3 with   >   replaced by   >   be satisfied. 



Table  1  (Cont. ) 

a     =0,a    > 0,   a    >0 
z x y 

a    > 0,   a    > 0,   a    >0 
x y z 

b    = 0,   b    = Da   I  b   /foa   I  +(I   -I   )b   ] , 
z y y   x   x x y       x     y    x 

b     = ,=+F- 
b    = oa   I  b  /fpa   I  + (I   -I  )b  1 

Z ZXXXZ X       Z       X 

b    = Da   Ib/[oa  I  +(I   -I  )b  1 y yxxxy       xyx 

b     = +   ,'l-b   2-b   Z 

Given the values of the spacecraft parameters,   a threshold   t  of wheel 

speed can be determined from Eqs.   2 and 3  such that if to > t   the vector   h 

has only one stable equilibrium point in the  spacecraft coordinate system.     In 

this equilibrium position,   the components of  h   can be determined from the 

relations of Table   1.     If u < t,   there may be as many as three equilibrium 

positions.     In each equilibrium position,   the spacecraft body may rotate about 

h.     These positions may be studied using the expressions of the appendix.     It 

is desirable that the spacecraft be designed to keep  to > t   so that the additional 

equilibrium positions will not exist. 

4.     Example:    Wheel Axis Along a  Principal Axis 

Consider a spacecraft composed of two rigid bodies.     See Fig.   2.     The 

first body contains a momentum wheel with its  spin axis parallel to   Z.     The 

second body rotates very slowly (e. g. ,   once per day for  spacecraft in synchro- 

nous equatorial orbit) about   Z   with respect to the first and   Z   is a principal 

axis of both bodies.     This  slow rotation is caused by a drive which for long 

periods of time (e. g. ,   twenty-four hours) does not require any sensor input 

from outside the spacecraft so that during any particular short time interval 

of interest the  spacecraft can be considered to be a rigid body with one prin- 

cipal axis along axis   Z.     Assume that the moments of inertia normalized by 

dividing by the constant   I_  are 

Iv/l-7    =   5- 330 + 0. 038 cos 20, 

I   /i       =   5. 160 - 0. 038 cos 26, 



and 
Ivv/l„    =    0. 38 sin 26 

where   0   is the angle of body  1  relative to body 2. 

Consider the satellite position   9=0.     In this case,   the   X,   Y,   and   Z 

axis are the principal axes, 

I  /I      =5. 368, 

and 

I   /I      =5. 122. 
y   z 

The case described here is   a     =  1,   a     = a     =0.     Equations 2 and  3 imply that, 
coC / z x y 

ii   0 =  (-Ü-) >   1 —(I   /I   )  = 0. 814,   a unique minimum occurs at   b     =   1,   b     = n z     x z y 
b     = 0.     Therefore,   if the speed of the wheel is always kept high enough  so 

that 81.4$ of the angular momentum of the  spacecraft is due to the wheel 

spinning relative to the body,   only one stable equilibrium position exists.     In 

this position,   the body may be spinning around the   Z   axis. 

If  0 < 0. 814,   the results of the  appendix show that there may be two 

equilibrium positions at 

b     = 0, 
y 

b    = DI /(I   -I  ) = p/0. 814, 
Z XX z 

and 
b     = ±    l-(o/0. 814)2. 

Consider the satellite position   6 = rr/2.     Equations 2 and 3 imply that, 
/"•• 

if   D = (-T—) > 0. 811,   a unique minimum occurs at  b     =   1,   b    = b     =0.     At this h ^ z y x 
stable equilibrium position the body may spin about the   Z   axis. 

5.     Example:    Wheel Axis Which may not be Along a Principal Axis 

Consider a spacecraft composed of two rigid bodies.     See Fig.   3.     The 

first body contains a momentum wheel with its  spin axis parallel to   Z.     The 

second body rotates with respect to the first very slowly about   Y   and   Y   is a 

principal axis of both bodies.     With respect to this rotation,   the  situation is 

the  same as that of the previous example  so that for  stability analysis the 

spacecraft can be considered to be a single rigid body which contains a 



momentum wheel.     Assume that the moments of inertia,   normalized by- 

dividing by the constant   Iv,   are 

Ix/ly    =    7. 4 + 0. 089 cos 26, 

and 

Iz/lv    =   6. 89 - 0. 089 cos 29, 

Ixz/lv    =   0. 089 sin 26 

where   6   is the angle between the two bodies which is considered to be a con- 

stant at any particular time.     The coordinates  x,   y,   and   z   are chosen so that 

z   is along   Y   and   x   is in the   XZ   plane displaced an angle   cp  from   X.     The 

condition   I       =0   determines   cr.     By substituting coordinate transformations xy ' ° 
into the definition for the moments of inertia,   we obtain the relations 

!x = Wz-htz^1? 
and 

which can be solved for   I   /i   ,   I   /i   ,   and   CD. 
y     z      x     z 

Consider the case   6 = n/4.     Then 

I  /I      =6. 875 
y   z 

I  /I      =7. 415 x    z 
and 

cp   =   9-6°. 

Therefore,   a    = 0,   a    =0. 167,   a    =0. 985.     Equations 2 and 3 imply that,   if 
c z x y ^ ' 

p   = (^r—) > 0. 05,   there is only one point of minimum energy.     At this point, 

b     =0   and   b     and   b     satisfy 
x y x 

and 

b      =   6. 35 Db  /(D  + 0. 47b   ) (4) y x x 

b       =    +   jl -b   2. (5) 
x M y 



This follows from Table  1.     Therefore,   if the wheel speed is kept high enough 

so that more than 5<# of the angular momentum of the  spacecraft is due to the 

wheel  spinning relative to the body,   the momentum vector has only one  stable 

equilibrium point in spacecraft coordinates.     In this equilibrium position,   the 

vector   h   is not parallel to the wheel axis.     The body may spin about an axis 

along   h. 

If  p  < 0. 051,   there may be one,   two,   or three equilibrium points 

depending upon whether Eqs.   4 and  5 have one,   two,   or three  solutions in 

the  region   b     =0,    1  > b     >0,    1  > b     >  -1.     This follows  from the appendix, z y x 

Consider the case   6=0.     Then 

I  /I      =7. 489, x    z 

I  /I      =6. 801, y     z 

and   cp = 0°   so that   a     =  ]   and   a     = a     =0.     If  p > 0. 092,   there is only one 
y x z 

point of minimum energy located at  b    =   1,   b     = b     =0.     In this  stable equi- 

librium  state,   the body may spin about the   Z   axis. 

If  p < 0. 092,   there are two  stable equilibrium points at   b     = 0,   b     = 

o/0. 092,   and  b    = ±^;1-(D/0. 092)2. 

Consider the case   9 = n/2.     Then 

I  /I      =7. 311, x    z 

I  /I      =6. 979, y     z 

and   CD = 0      so that  a     =1   and   a     = a     =0.     If  p > 0. 0454,   there is only one y x z 
point of minimum energy located at  b     =  1,   b     = b     =0.     In this  stable equi- &} y x z M 

librium state,   the body may spin about the   Z   axis.     If  p < 0. 0454,   there are 

two  stable equilibrium points at   b     = 0,   b     = p/O. 0454 and   b     = ±^1 - (p/o. 0454)Z. 

6.     Conclusions 

For   t < Co < h/C   where   t  is  some threshold,   co   is the momentum wheel 

speed,   C   is the wheel inertia,   and   h  is the magnitude of the spacecraft angu- 

lar momentum,   there is only one equilibrium  state of the spacecraft.     If the 

momentum wheel axis is not parallel to a principal axis of the  spacecraft,   in 



the equilibrium state the spacecraft body spins about an axis which is not 

parallel to either the wheel axis or a principal axis when  t < to < h/C.     If the 

wheel axis is parallel to a principal axis,   in the equilibrium state the body 

spins about an axis which is parallel to the wheel axis when  t < to < h/C.     The 

value of  t  and the orientation of the spin axis of the spacecraft body in the 

equilibrium state can be determined using the expressions derived in this 

report. 

10 
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pax = 0, 

APPENDIX 

1.     All minima of   T(b   , b   ,b   )   satisfy the following expressions.     If x       y       Z ' or 

b 
X 

_ 0 

b 
y 

= 
pa   I 

y * 
(i -i ) x       y 

If  pa     = 
y 

-- o, 

b 
v 

= 0 

b 
y 

= 0 

pa    I 
0 < b    <  ^ (A-l) 

y        I   -I 
' x      y 

1 < b    < 1. (A-2) 
x 

0 < b    < 1 (A-3) 

-pa   I 
lsbxs ^T • (A~4> 

x      y 

If  pa    > 0   and  pa    > 0, 
x y 

pa   I   b 
y  *,T

X r-rr-       0 < b    <  1 (A-S) 
y pa   I    + (I   -I   )b 
' x   y x      y    x 

x 

pa   I   b a   I \l/3 
b    =— y-v   T .,        -l^b<-b^^y) 

-pa    I 
and   b    < *  y   . (A-6) 

x       y 

These expressions denote  surfaces in   b   , b   , b      space.     On the   b   , b     plane 
x      y      z x      y 

they denote curves which are  shown in Figs.   A-l,   A-Z,   A-3,   and A-4.     To 

derive these expressions,   let 

T(bx,by)    =    Tj/h2 + T2/h2 

where 

T.    =   (b   -pa  )Z/l    + (b   -pa   )2/l 
i x   M x      x       y      y      y 

13 



and 
T2   =   (*^-»x

2-by
2   -   paz)2/lz + P2/C 

Define   r  and   9   such that  b    = r cos 8  and  b    = r sin 9,   and consider x y 
circles of constant   r  on the  b  ,b     plane.     A necessary condition for a point x     y   r ' Y 

at radius   r  to be a minimum of   T(b   , b   )   is that on a circle of constant   r x     y 
this point be a minimum of T(9), a function of a single variable 9. Since T 

is independent of 9, a point is a minimum of T(9) if and only if it is a mini- 

mum of   T.(6).     The conditions 

,   dT, bjb„-paj bjb_-paj 

y x 
and 

b   (b   -pa   )-(b  )2 

xxx y       ^   0 

x 

which must be satisfied by all minima for   r > 0 yield the desired expressions. 

The point   r = 0   must be checked separately. 

2.     All minima of   T(b   ,b   ,b   )   satisfy the following expressions.     If 
x     y     z 

1 dTl 
2    d6 

b   (b   — pa   )           b   (b   — pa   ) 
x    y        y               y    x        x 

I                                  I y                                 x 

1   dZTl -b   (b   -pa   ) + (b   )2           b y    y         y            x                  : 
2   de2 I 

y 

pax = 0, 

b 
X 

~* 0 

b z 
= 

pa   I M   z   X 

(I   -I   ) X        z 

pa ^z = o, 
b z 

— 0 

b z = 0 

pa   I 
0,bz^T_^ (A-7) 

x      z 

1 < b    <  1 (A-8) 

0 < b    < 1 (A-9) x 

-pa   I 
1 ^ b    <    f    

X
T
Z (A-10) 

x        I   —I 
X       z 

If  pa    > 0   and   oa    > 0, 1   x z 

14 



pa   I   b 
b      =  T

Z
X

X
/T

X
   T  \u 0<b    <l (A-ll) z pa   I    + (I   —I  )b x 

x   z x     z    x 

pa   I   b a   I \ l/3 
1 zxx ,       ,      ^    ,/    x   z \ 
bz    =   pa   I    +(I   -I  )b " J < bx S "bzl i-T J 

X   Z X       z     X \   z   x/ 

-pa    I 
and b    <   T    

x_z   . (A-12) 
x        I   — I 

X        z 

These expressions are identical to those of Section 1  except that   y   is replaced 

by   z.     They are derived in the  same way as the expression of Section   1. 

3.     Combining the results of Sections   1 and 2 yields curves in three- 

dimensional  space on which all minima of   T   must lie.     These curves are 

intersections of the  surfaces of Sections   1  and 2 and are  shown in Figs.   A-5 

through A-10 for six cases that occur.     A seventh case,   a     = 0,   a    > 0,   and 0 x y 
a    > 0   which is  shown in Fig.   A-ll  requires further  study.     The results of 

Sections   1 and 2 imply that any minimum of   T   must be either on the  straight 

line 

-, pa    I pa    I 
nu2. , yx , *zx 
0 < b      <  1, b =       y        , b     = -, *- • 

X V I    — 1 z        1    — 1 
' x      y x      z 

or the  rectangle 

pa   I pa   I 
b    =0, 0<b    <  T 

y T
x , 0 < b    < T   

z T
x • 

x y       1   — I z       I   — 1 
' x       y x       z 

Differentiating the expression for   T   on this rectangle yields further results 

that all minimum points on the rectangle  satisfy 

Da    I   b pa   I 
by    -    pa   I   y+(l-l)b °^bz^r4^' (A-13) 

' zyzyz xy 

This curve is also shown in Fig.   A-ll. 

2 2 2 
The constraint   b      + b      + b      =1   implies that only values of   T   defined 

x y z 
for points on the  sphere of unit radius centered at the origin are of interest. 

In particular,   all minimum points of   T   are on this unit sphere so that for each 
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case of Figs. A-4 to A-11 a minimum of T can only occur where a curve 

intersects the unit sphere. Therefore, there can be at most two or three 

minima of   T   depending on the case.     There is always one minimum in the 

region  b    > 0,   b    ^ 0,   b    5 0   and there can be zero,   one,   or two minima in ° x y z 
the region  b    < 0,   b    > 0,   b    > 0.     Equations A-l  through A-13 may be used 

to determine the coordinates of all minima of  T.     The next section investigates 

sufficient conditions for there to be only one minimum or equivalently there to 

be no minima in the region   b    < 0,   b    > 0,   b    > 0. 0 x y z 

4.     From Eqs.   A-l through A-6 or Figs.   A-l through A-4,   it is evi- 

dent that sufficient conditions that no minima occur in the region  b    < 0, B x 
b    > 0,   b    > 0   are as follows. 

If Da     = 0, 
y 

-pa   I x y 
i -i l. 

If  Da    = 0, x 

pa   I 
y * 

i -i 
x       y 

If  pa    > 0,   pa    > 0, 
x y 

where   d 
min 

(d . r > i mm 

is the minimum value of 

/        pa    I   b 
d    = b2 + x 

y   x   x 
pa   I    + (I   -I  )b x   y x      y    x i 

1/2 

the distance from the origin to a point on the surface on which all minima must 

occur in the region  b    < 0,   b    ^ 0,   b    s 0.     Differentiation of  d     with respect ° x y z ^ 
to   b     yields 

x 

(d     .   ) mm 

(a   I  )2/3 + (a   I  )2/3 

2 2    L   x  y y  x 
=   P 

(I   -I  ) x      y 
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In all three cases,   the sufficient condition for no minima in the region  b    < 0, 
x 

b    > 0,   b    5 0, which implies that there is only one minimum of  T,   is 
y z ' r ' 

2 
P       > 

<I   -I  )' x   y 

(a   I   )2/3 + (a    I   )Z/31: 

_  x   y y  x        J 

An analogous  sufficient condition for there to be only one minimum of   T   can 

be derived from Eqs.   A-7 through A-1Z.     It is 

(I   -I   ) x       z 

f(a   I   )2/3 + (a    I   )2/3l: 
X    Z Z    X 
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Fig. A-l 
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1,-1, 
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2/Maylx)

1/3 

h~ 

-* b. 

Fig. A-3 
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Fie. A-4 
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Fig. A-5 
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Fig. A-6 
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a2 = 1, ax = ay = 0 

Fig. A-7 
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Fig. A-9 
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Fig. A-10 
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Fig. A-ll 
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